231 research outputs found

    Pengaruh Fraksi Penipisan (P) Air Tanah Tersedia Pada Berbagai Fase Tumbuh Terhadap Pertumbuhan, Hasil Dan Efisiensi Penggunaan Air Tanaman Kedelai (Glycine Max [L] Merr.)

    Get PDF
    Penelitian bertujuan untuk mengetahui pengaruh fraksi penipisan (p) air tanah tersedia pada berbagai fase tumbuh terhadap pertumbuhan dan efisiensi penggunaan air tanaman kedelai. Penelitian ini dilaksanakan di dalam rumah plastik, laboratorium lapang terpadu, Universitas Lampung pada bulan Oktober 2015 sampai dengan Januari 2016. Penelitian ini menggunakan rancangan Faktorial dalam Acak Lengkap (RAL) dengan 2 faktor perlakuan, yaitu faktor I (Fraksi penipisan air tanah tersedia, p) dan faktor II (fase tumbuh, F). Masing-masing perlakuan terdiri dari 3 taraf, yaitu faktor I terdiri dari P1(0,2), P2(0,4) dan P3(0,6) dari penipisan air tanah tersedia, dan faktor II terdiri dari fase vegetatif aktif (F1), fase pembungaan (F2), dan fase pembentukan polong (F3), dengan ulangan sebanyak 3 kali. Pengukuran evapotranspirasi tanaman acuan dilakukan pada fraksi penipisan 0,2 dari air tanah tersedia dengan menggunakan tanaman rumput. Hasil penelitian menunjukkan bahwa, perlakuan fraksi penipisan (p) air tanah tersedia pada berbagai fase tumbuhtidak berpengaruh terhadap pertumbuhan dan efisiensi penggunaan air tanaman kedelai.Tanaman kedelai pada perlakuan fraksi penipisan (p) air tanah tersedia tidak mengalami cekaman air pada semua perlakuan, karena tanaman sebelum mendekati batas bawah perlakuan segera diberi irigasi dan dikembalikan ke kondisi kapasitas lapang. Produksi tertinggi dengan nilai efisiensi penggunaan air tertinggi dicapai oleh perlakuan fraksi penipisan (0-0,2) air tanah tersedia pada perlakuan fase pembungaan (F2). Tanaman kedelai menghasilkan produksi yang tinggi pada fraksi penipisan 0,4 untuk perlakuan fase pertumbuhan aktif dan fraksi penipisan 0,2 untuk perlakuan fase pembungaan dan fase pengisian polong

    How the other half lives: CRISPR-Cas's influence on bacteriophages

    Full text link
    CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells used to combat phage and plasmid threats. The host cell adapts by incorporating DNA sequences from invading phages or plasmids into its CRISPR locus as spacers. These spacers are expressed as mobile surveillance RNAs that direct CRISPR-associated (Cas) proteins to protect against subsequent attack by the same phages or plasmids. The threat from mobile genetic elements inevitably shapes the CRISPR loci of archaea and bacteria, and simultaneously the CRISPR-Cas immune system drives evolution of these invaders. Here we highlight our recent work, as well as that of others, that seeks to understand phage mechanisms of CRISPR-Cas evasion and conditions for population coexistence of phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure

    Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network

    Get PDF
    The employment of the brain signals electroencephalography (EEG) could supply a deep intuitive understanding for infants behaviour and their alertness level within the living environment. The study of human brain through a computer-based approach has increased significantly as it aiming at the understanding of infants’ mind and measure their attention towards the surrounding activities. The artificial neural network achieved a significant level of success in different fields such as pattern classification, decision making, prediction, and adaptive control by learning from a set of data and construct weight matrices to represent the learning patterns. This research study proposes an artificial neural network based approach to predict the rightward asymmetry or leftward asymmetry which reflects higher frontal functional connectivity in the frontal right and frontal left, respectively within infant’s brain. In the traditional methods, the value of asymmetry of the frontal (FA) functional connectivity is used to determine the rightward or the leftward asymmetry. While the proposed approach is trying to predict that without going through all the levels of the calculation complexity. The achieved work will supply a deep understanding into the deployment of the functional connectivity to provide information on the interactions between different brain regions

    Re-reading in Stylistics

    Get PDF
    Cognitive stylistics is primarily concerned with the cognitive processes – mental simulations – experienced by readers. Most cognitive stylisticians agree that experiences of reading texts are dynamic and flexible. Changes in the context of reading, our attentional focus on a given day, our extra background knowledge about the text, and so on, are all factors that contribute to our experience of a fictional world. A second reading of a text is a different experience to a first reading. As researchers begin to systematically distinguish between the ‘solitary’ and ‘social’ readings that constitute reading as a phenomenon (Peplow et al., 2016), the relationship between multiple readings and the nature of their processing become increasingly pertinent. In order to explore this relationship, firstly we examine the different ways in which re-reading has previously been discussed in stylistics, grounding our claims in an empirical analysis of articles published in key stylistics journals over the past two decades. Next, we draw on reader response data from an online questionnaire in order to assess the role of re-reading and the motivations that underpin it. Finally, we describe an exercise for the teaching of cognitive stylistics, specifically applying schema theory in literary linguistic analysis (Cook, 1994), which illustrates the need to distinguish between readings as part of an analysis. Through these three sections we argue that our experiences of texts should be considered diachronically, and propose that the different readings that make up an analysis of a text should be given greater attention in stylistic research and teaching

    Germ Warfare in a Microbial Mat Community: CRISPRs Provide Insights into the Co-Evolution of Host and Viral Genomes

    Get PDF
    CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B′) as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B′ genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B′, but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as “viritopes” to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities

    CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering

    Get PDF
    Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes.1–7. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a novel transcriptional activation–based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator–like (TAL) effector proteins8, 9. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effector proteins can potentially tolerate 1–3 and 1–2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity

    Coordinating Environmental Genomics and Geochemistry Reveals Metabolic Transitions in a Hot Spring Ecosystem

    Get PDF
    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability

    Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS

    Get PDF
    Background: CRISPR-Cas systems provide adaptive immunity to mobile genetic elements in prokaryotes. In many bacteria, including E. coli, a specialized ribonucleoprotein complex called Cascade enacts immunity by “an interference reaction" between CRISPR encoded RNA (crRNA) and invader DNA sequences called “protospacers”. Cascade recognizes invader DNA via short “protospacer adjacent motif” (PAM) sequences and crRNA-DNA complementarity. This triggers degradation of invader DNA by Cas3 protein and in some circumstances stimulates capture of new invader DNA protospacers for incorporation into CRISPR as “spacers” by Cas1 and Cas2 proteins, thus enhancing immunity. Co-expression of Cascade, Cas3 and crRNA is effective at giving E. coli cells resistance to phage lysis, if a transcriptional repressor of Cascade and CRISPR, H-NS, is inactivated (Δhns). We present further genetic analyses of the regulation of CRISPR-Cas mediated phage resistance in Δhns E. coli cells. Results: We observed that E. coli Type I-E CRISPR-Cas mediated resistance to phage λ was strongly temperature dependent, when repeating previously published experimental procedures. Further genetic analyses highlighted the importance of culture conditions for controlling the extent of CRISPR immunity in E. coli. These data identified that expression levels of cas3 is an important limiting factor for successful resistance to phage. Significantly, we describe the new identification that cas3 is also under transcriptional control by H-NS but that this is exerted only in stationary phase cells. Conclusions: Regulation of cas3 is responsive to phase of growth, and to growth temperature in E. coli, impacting on the efficacy of CRISPR-Cas immunity in these experimental systems

    Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus

    Get PDF
    The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response in S. thermophilus DGCC7710 infected with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infection and across various time points using two-dimensional liquid chromatography tandem mass spectrometry. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance following infection, including the signature Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection
    corecore